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5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in R2 and R3, they both can be defined
using the dot product. In this section we extend the dot product to vectors in Rn, and so endow Rn with
euclidean geometry. We then introduce the idea of an orthogonal basis—one of the most useful concepts
in linear algebra, and begin exploring some of its applications.

Dot Product, Length, and Distance

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two n-tuples in Rn, recall that their dot product was
defined in Section 2.2 as follows:

x ·y = x1y1 + x2y2 + · · ·+ xnyn

Observe that if x and y are written as columns then x ·y = xT y is a matrix product (and x ·y = xyT if they
are written as rows). Here x ·y is a 1×1 matrix, which we take to be a number.

Definition 5.6 Length in Rn

As in R3, the length ‖x‖ of the vector is defined by

‖x‖=
√

x ·x =
√

x2
1 + x2

2 + · · ·+ x2
n

Where
√

( ) indicates the positive square root.

A vector x of length 1 is called a unit vector. If x 6= 0, then ‖x‖ 6= 0 and it follows easily that 1
‖x‖x is a

unit vector (see Theorem 5.3.6 below), a fact that we shall use later.

Example 5.3.1

If x = (1, −1, −3, 1) and y = (2, 1, 1, 0) in R4, then x ·y = 2−1−3+0 =−2 and
‖x‖=

√
1+1+9+1 =

√
12 = 2

√
3. Hence 1

2
√

3
x is a unit vector; similarly 1√

6
y is a unit vector.

These definitions agree with those in R2 and R3, and many properties carry over to Rn:

Theorem 5.3.1

Let x, y, and z denote vectors in Rn. Then:

1. x ·y = y ·x.

2. x · (y+ z) = x ·y+x · z.

3. (ax) ·y = a(x ·y) = x · (ay) for all scalars a.
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4. ‖x‖2 = x ·x.

5. ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0.

6. ‖ax‖= |a|‖x‖ for all scalars a.

Proof. (1), (2), and (3) follow from matrix arithmetic because x ·y = xT y; (4) is clear from the definition;

and (6) is a routine verification since |a| =
√

a2. If x = (x1, x2, . . . , xn), then ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n

so ‖x‖= 0 if and only if x2
1 + x2

2 + · · ·+ x2
n = 0. Since each xi is a real number this happens if and only if

xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 5.3.1, computations with dot products in Rn are similar to those in R3. In partic-
ular, the dot product

(x1 +x2 + · · ·+xm) · (y1 +y2 + · · ·+yk)

equals the sum of mk terms, xi ·y j, one for each choice of i and j. For example:

(3x−4y) · (7x+2y) = 21(x ·x)+6(x ·y)−28(y ·x)−8(y ·y)
= 21‖x‖2−22(x ·y)−8‖y‖2

holds for all vectors x and y.

Example 5.3.2

Show that ‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 for any x and y in Rn.

Solution. Using Theorem 5.3.1 several times:

‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y
= ‖x‖2 +2(x ·y)+‖y‖2

Example 5.3.3

Suppose that Rn = span{f1, f2, . . . , fk} for some vectors fi. If x · fi = 0 for each i where x is in Rn,
show that x = 0.

Solution. We show x = 0 by showing that ‖x‖= 0 and using (5) of Theorem 5.3.1. Since the fi

span Rn, write x = t1f1 + t2f2 + · · ·+ tkfk where the ti are in R. Then

‖x‖2 = x ·x = x · (t1f1 + t2f2 + · · ·+ tkfk)

= t1(x · f1)+ t2(x · f2)+ · · ·+ tk(x · fk)

= t1(0)+ t2(0)+ · · ·+ tk(0)

= 0
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We saw in Section 4.2 that if u and v are nonzero vectors in R3, then u·v
‖u‖‖v‖ = cosθ where θ is the angle

between u and v. Since |cosθ | ≤ 1 for any angle θ , this shows that |u ·v| ≤ ‖u‖‖v‖. In this form the result
holds in Rn.

Theorem 5.3.2: Cauchy Inequality9

If x and y are vectors in Rn, then
|x ·y| ≤ ‖x‖‖y‖

Moreover |x ·y|= ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.

Proof. The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, write ‖x‖ = a > 0 and
‖y‖= b > 0 for convenience. A computation like that preceding Example 5.3.2 gives

‖bx−ay‖2 = 2ab(ab−x ·y) and ‖bx+ay‖2 = 2ab(ab+x ·y) (5.1)

It follows that ab−x ·y≥ 0 and ab+x ·y≥ 0, and hence that−ab≤ x ·y≤ ab. Hence |x·y| ≤ ab= ‖x‖‖y‖,
proving the Cauchy inequality.

If equality holds, then |x · y| = ab, so x · y = ab or x · y = −ab. Hence Equation 5.1 shows that
bx−ay = 0 or bx+ay = 0, so one of x and y is a multiple of the other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x ·y)2 ≤ ‖x‖2‖y‖2. In R5 this becomes

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 ≤ (x2

1 + x2
2 + x2

3 + x2
4 + x2

5)(y
2
1 + y2

2 + y2
3 + y2

4 + y2
5)

for all xi and yi in R.

There is an important consequence of the Cauchy inequality. Given x and y in Rn, use Example 5.3.2
and the fact that x ·y≤ ‖x‖‖y‖ to compute

‖x+y‖2 = ‖x‖2 +2(x ·y)+‖y‖2 ≤ ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x+y‖)2

Taking positive square roots gives:

Corollary 5.3.1: Triangle Inequality

If x and y are vectors in Rn, then ‖x+y‖ ≤ ‖x‖+‖y‖.

v w

v+w

The reason for the name comes from the observation that in R3 the
inequality asserts that the sum of the lengths of two sides of a triangle is
not less than the length of the third side. This is illustrated in the diagram.

9Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the age of
26. He was one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis
in which he established new standards of rigour and founded the theory of functions of a complex variable. He was a devout
Catholic with a long-term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after
he was deposed in 1830. Theorem 5.3.2 first appeared in his 1812 memoir on determinants.
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Definition 5.7 Distance in Rn

If x and y are two vectors in Rn, we define the distance d(x, y) between x and y by

d(x, y) = ‖x−y‖

w
v−w

v

The motivation again comes from R3 as is clear in the diagram. This
distance function has all the intuitive properties of distance in R3, includ-
ing another version of the triangle inequality.

Theorem 5.3.3

If x, y, and z are three vectors in Rn we have:

1. d(x, y)≥ 0 for all x and y.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x) for all x and y .

4. d(x, z)≤ d(x, y)+d(y, z)for all x, y, and z. Triangle inequality.

Proof. (1) and (2) restate part (5) of Theorem 5.3.1 because d(x, y) = ‖x− y‖, and (3) follows because
‖u‖= ‖−u‖ for every vector u in Rn. To prove (4) use the Corollary to Theorem 5.3.2:

d(x, z) = ‖x− z‖= ‖(x−y)+(y− z)‖
≤ ‖(x−y)‖+‖(y− z)‖= d(x, y)+d(y, z)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors x and y in Rn are orthogonal if x ·y = 0, extending the terminology in R3

(See Theorem 4.2.3). More generally, a set {x1, x2, . . . , xk} of vectors in Rn is called an
orthogonal set if

xi ·x j = 0 for all i 6= j and xi 6= 0 for all i10

Note that {x} is an orthogonal set if x 6= 0. A set {x1, x2, . . . , xk} of vectors in Rn is called
orthonormal if it is orthogonal and, in addition, each xi is a unit vector:

‖xi‖= 1 for each i.

10The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthog-
onal bases.
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Example 5.3.4

The standard basis {e1, e2, . . . , en} is an orthonormal set in Rn.

The routine verification is left to the reader, as is the proof of:

Example 5.3.5

If {x1, x2, . . . , xk} is orthogonal, so also is {a1x1, a2x2, . . . , akxk} for any nonzero scalars ai.

If x 6= 0, it follows from item (6) of Theorem 5.3.1 that 1
‖x‖x is a unit vector, that is it has length 1.

Definition 5.9 Normalizing an Orthogonal Set

Hence if {x1, x2, . . . , xk} is an orthogonal set, then { 1
‖x1‖x1, 1

‖x2‖x2, · · · , 1
‖xk‖xk} is an

orthonormal set, and we say that it is the result of normalizing the orthogonal set {x1, x2, · · · , xk}.

Example 5.3.6

If f1 =




1
1
1
−1


, f2 =




1
0
1
2


, f3 =




−1
0
1
0


, and f4 =




−1
3
−1

1


 then {f1, f2, f3, f4} is an orthogonal

set in R4 as is easily verified. After normalizing, the corresponding orthonormal set is
{1

2f1, 1√
6
f2, 1√

2
f3, 1

2
√

3
f4}

v+w

v

w
The most important result about orthogonality is Pythagoras’ theorem.

Given orthogonal vectors v and w in R3, it asserts that

‖v+w‖2 = ‖v‖2 +‖w‖2

as in the diagram. In this form the result holds for any orthogonal set in Rn.

Theorem 5.3.4: Pythagoras’ Theorem

If {x1, x2, . . . , xk} is an orthogonal set in Rn, then

‖x1 +x2 + · · ·+xk‖2 = ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2.

Proof. The fact that xi ·x j = 0 whenever i 6= j gives
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‖x1 +x2 + · · ·+xk‖2 = (x1 +x2 + · · ·+xk) · (x1 +x2 + · · ·+xk)

= (x1 ·x1 +x2 ·x2 + · · ·+xk ·xk)+∑
i 6= j

xi ·x j

= ‖x1‖2 +‖x2‖2 + · · ·+‖xk‖2 +0

This is what we wanted.

If v and w are orthogonal, nonzero vectors in R3, then they are certainly not parallel, and so are linearly
independent Example 5.2.7. The next theorem gives a far-reaching extension of this observation.

Theorem 5.3.5

Every orthogonal set in Rn is linearly independent.

Proof. Let {x1, x2, . . . , xk} be an orthogonal set in Rn and suppose a linear combination vanishes, say:
t1x1 + t2x2 + · · ·+ tkxk = 0. Then

0 = x1 ·0 = x1 · (t1x1 + t2x2 + · · ·+ tkxk)

= t1(x1 ·x1)+ t2(x1 ·x2)+ · · ·+ tk(x1 ·xk)

= t1‖x1‖2 + t2(0)+ · · ·+ tk(0)

= t1‖x1‖2

Since ‖x1‖2 6= 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5.3.5 suggests considering orthogonal bases for Rn, that is orthogonal sets that span Rn.
These turn out to be the best bases in the sense that, when expanding a vector as a linear combination of
the basis vectors, there are explicit formulas for the coefficients.

Theorem 5.3.6: Expansion Theorem

Let {f1, f2, . . . , fm} be an orthogonal basis of a subspace U of Rn. If x is any vector in U , we have

x =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f1 + · · ·+

(
x·fm

‖fm‖2

)
fm

Proof. Since {f1, f2, . . . , fm} spans U , we have x = t1f1+ t2f2+ · · ·+ tmfm where the ti are scalars. To find
t1 we take the dot product of both sides with f1:

x · f1 = (t1f1 + t2f2 + · · ·+ tmfm) · f1

= t1(f1 · f1)+ t2(f2 · f1)+ · · ·+ tm(fm · f1)

= t1‖f1‖2 + t2(0)+ · · ·+ tm(0)

= t1‖f1‖2
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Since f1 6= 0, this gives t1 =
x·f1
‖f1‖2 . Similarly, ti =

x·fi

‖fi‖2 for each i.

The expansion in Theorem 5.3.6 of x as a linear combination of the orthogonal basis {f1, f2, . . . , fm} is
called the Fourier expansion of x, and the coefficients t1 =

x·fi

‖fi‖2 are called the Fourier coefficients. Note

that if {f1, f2, . . . , fm} is actually orthonormal, then ti = x · fi for each i. We will have a great deal more to
say about this in Section 10.5.

Example 5.3.7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis {f1, f2, f3, f4} of R4 given
in Example 5.3.6.

Solution. We have f1 = (1, 1, 1, −1), f2 = (1, 0, 1, 2), f3 = (−1, 0, 1, 0), and
f4 = (−1, 3, −1, 1) so the Fourier coefficients are

t1 =
x·f1
‖f1‖2 = 1

4(a+b+ c+d) t3 =
x·f3
‖f3‖2 =

1
2(−a+ c)

t2 =
x·f2
‖f2‖2 = 1

6(a+ c+2d) t4 =
x·f4
‖f4‖2 =

1
12(−a+3b− c+d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of Rn have an orthogonal basis? The answer is
“yes”; in fact, there is a systematic procedure, called the Gram-Schmidt algorithm, for turning any basis
of U into an orthogonal one. This leads to a definition of the projection onto a subspace U that generalizes
the projection along a vector used in R2 and R3. All this is discussed in Section 8.1.

Exercises for 5.3

We often write vectors in Rn as row n-tuples.

Exercise 5.3.1 Obtain orthonormal bases of R3 by nor-
malizing the following.

a. {(1, −1, 2), (0, 2, 1), (5, 1, −2)}

b. {(1, 1, 1), (4, 1, −5), (2, −3, 1)}

Exercise 5.3.2 In each case, show that the set of vectors
is orthogonal in R4.

a. {(1, −1, 2, 5), (4, 1, 1, −1), (−7, 28, 5, 5)}

b. {(2, −1, 4, 5), (0, −1, 1, −1), (0, 3, 2, −1)}

Exercise 5.3.3 In each case, show that B is an or-
thogonal basis of R3 and use Theorem 5.3.6 to expand
x = (a, b, c) as a linear combination of the basis vectors.

a. B = {(1, −1, 3), (−2, 1, 1), (4, 7, 1)}

b. B = {(1, 0, −1), (1, 4, 1), (2, −1, 2)}

c. B = {(1, 2, 3), (−1, −1, 1), (5, −4, 1)}

d. B = {(1, 1, 1), (1, −1, 0), (1, 1, −2)}

Exercise 5.3.4 In each case, write x as a linear combi-
nation of the orthogonal basis of the subspace U .

a. x=(13, −20, 15); U = span{(1, −2, 3), (−1, 1, 1)}
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b. x = (14, 1, −8, 5);
U = span{(2, −1, 0, 3), (2, 1, −2, −1)}

Exercise 5.3.5 In each case, find all (a, b, c, d) in R4

such that the given set is orthogonal.

a. {(1, 2, 1, 0), (1, −1, 1, 3), (2, −1, 0, −1),
(a, b, c, d)}

b. {(1, 0, −1, 1), (2, 1, 1, −1), (1, −3, 1, 0),
(a, b, c, d)}

Exercise 5.3.6 If ‖x‖= 3, ‖y‖= 1, and x ·y =−2, com-
pute:

‖3x−5y‖a. ‖2x+7y‖b.

(3x−y) · (2y−x)c. (x−2y) · (3x+5y)d.

Exercise 5.3.7 In each case either show that the state-
ment is true or give an example showing that it is false.

a. Every independent set in Rn is orthogonal.

b. If {x, y} is an orthogonal set in Rn, then {x, x+y}
is also orthogonal.

c. If {x, y} and {z, w} are both orthogonal in Rn,
then {x, y, z, w} is also orthogonal.

d. If {x1, x2} and {y1, y2, y3} are both or-
thogonal and xi · y j = 0 for all i and j, then
{x1, x2, y1, y2, y3} is orthogonal.

e. If {x1, x2, . . . , xn} is orthogonal in Rn, then
Rn = span{x1, x2, . . . , xn}.

f. If x 6= 0 in Rn, then {x} is an orthogonal set.

Exercise 5.3.8 Let v denote a nonzero vector in Rn.

a. Show that P = {x in Rn | x · v = 0} is a subspace
of Rn.

b. Show that Rv = {tv | t in R} is a subspace of Rn.

c. Describe P and Rv geometrically when n = 3.

Exercise 5.3.9 If A is an m×n matrix with orthonormal
columns, show that AT A = In. [Hint: If c1, c2, . . . , cn are
the columns of A, show that column j of AT A has entries
c1 · c j, c2 · c j, . . . , cn · c j].

Exercise 5.3.10 Use the Cauchy inequality to show that√
xy ≤ 1

2(x+ y) for all x ≥ 0 and y ≥ 0. Here
√

xy and

1
2 (x+ y) are called, respectively, the geometric mean and
arithmetic mean of x and y.

[Hint: Use x =

[ √
x√
y

]
and y =

[ √
y√
x

]
.]

Exercise 5.3.11 Use the Cauchy inequality to prove
that:

a. r1 + r2+ · · ·+ rn ≤ n(r2
1 + r2

2 + · · ·+ r2
n) for all ri in

R and all n≥ 1.

b. r1r2 + r1r3 + r2r3 ≤ r2
1 + r2

2 + r2
3 for all r1, r2, and

r3 in R. [Hint: See part (a).]

Exercise 5.3.12

a. Show that x and y are orthogonal in Rn if and only
if ‖x+y‖= ‖x−y‖.

b. Show that x+ y and x− y are orthogonal in Rn if
and only if ‖x‖= ‖y‖.

Exercise 5.3.13

a. Show that ‖x+y‖2 = ‖x‖2 +‖y‖2 if and only if x

is orthogonal to y.

b. If x =

[
1
1

]
, y =

[
1
0

]
and z =

[
−2

3

]
, show

that ‖x+y+ z‖2 = ‖x‖2 +‖y‖2 +‖z‖2 but
x ·y 6= 0, x · z 6= 0, and y · z 6= 0.

Exercise 5.3.14

a. Show that x ·y = 1
4 [‖x+y‖2−‖x−y‖2] for all x,

y in Rn.

b. Show that ‖x‖2 +‖y‖2 = 1
2

[
‖x+y‖2 +‖x−y‖2

]

for all x, y in Rn.

Exercise 5.3.15 If A is n×n, show that every eigenvalue
of AT A is nonnegative. [Hint: Compute ‖Ax‖2 where x

is an eigenvector.]

Exercise 5.3.16 If Rn = span{x1, . . . , xm} and
x·xi = 0 for all i, show that x= 0. [Hint: Show ‖x‖= 0.]

Exercise 5.3.17 If Rn = span {x1, . . . , xm} and x ·xi =
y ·xi for all i, show that x = y. [Hint: Exercise 5.3.16]

Exercise 5.3.18 Let {e1, . . . , en} be an orthogonal basis
of Rn. Given x and y in Rn, show that

x ·y = (x·e1)(y·e1)
‖e1‖2 + · · ·+ (x·en)(y·en)

‖en‖2
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5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given in
Section 1.2, and to study its properties. This requires that we deal with rows and columns in the same way.
While it has been our custom to write the n-tuples in Rn as columns, in this section we will frequently
write them as rows. Subspaces, independence, spanning, and dimension are defined for rows using matrix
operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1

Let A and B denote m×n matrices.

1. If A→ B by elementary row operations, then row A = row B.

2. If A→ B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A→ B by a single
row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A→ B either interchanges
two rows, multiplies a row by a nonzero constant, or adds a multiple of a row to a different row. We leave
the first two cases to the reader. In the last case, suppose that a times row p is added to row q where p < q.
Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm, and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A→ R by elementary row operations where R is a row-echelon matrix.
Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This proves
(1).


